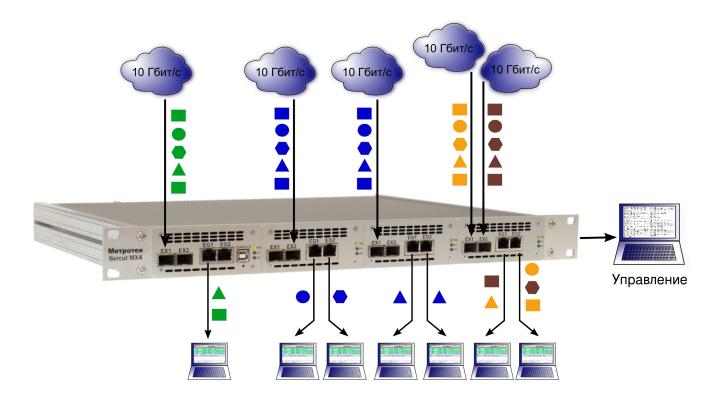
Маркер-анализатор 10 Gigabit Ethernet Беркут-МХ

Высокие скорости передачи в магистральных каналах предъявляют жёсткие требования к ресурсам и производительности систем анализа трафика. Один из важнейших параметров таких систем — отсутствие потерь информации при максимальной нагрузке.

Оперативный мониторинг 10-гигабитных трактов в режиме реального времени, оценка нагрузки, выборочный анализ данных без воздействия на сеть и потерь информации — все эти функции реализованы в приборе Беркут-МХ.

Беркут-MX предоставляет возможность анализа и классификации 10G Ethernet трафика в условиях 100% нагрузки.


Реализованный в приборе механизм фильтрации позволяет разделить высокоскоростной трафик на независимые потоки с меньшей скоростью для дальнейшей избирательной обработки. Фильтрация выполняется по широкому спектру критериев (MPLS, VLAN, MAC/IP-адреса, DSCP, номера TCP/UDP-портов, группировка по диапазонам и дополнительным параметрам — чётный/нечётный номер порта или набор символов в содержимом пакета) и служит для выделения из основного потока необходимой для анализа информации.

Беркут-МХ производит захват трафика из 10G канала, выполняет процедуры классификации, фильтрации и, при необходимости, маркировки, после чего данные могут быть переданы на заданный пользователем интерфейс: 1-гигабит или 10-гигабит Ethernet.

- До восьми портов 10G Ethernet
- Режим фильтрации с трансляцией данных в 1G порт. Критерии выбора определяются пользователем и могут быть заданы для любых уровней модели OSI
- Оценка качества RTP-потоков

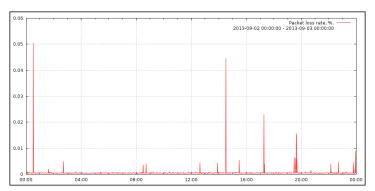
- Управление посредством интерфейса командной строки (CLI) для настройки параметров фильтрации и получения статусной информации.
- Сбор статистики по принимаемому трафику
- Малое энергопотребление и габариты

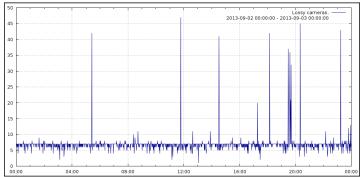
Оперативный анализ трафика

В большинстве случаев для выявления проблем с маршрутизацией, избыточной нагрузкой или несанкционированным трафиком достаточно выбрать из информационного потока некоторую последовательность кадров и декодировать их, чтобы локализовать источник возможных неисправностей.

Но для высоко-нагруженных 10G Ethernet трактов задача выделения пакетов по комплексному набору критериев и без потерь информации становится не такой тривиальной, как для сетей со сравнительно низкими скоростями передачи. Даже самый современный и мощный компьютер с 10-гигабитной сетевой картой не даёт возможности без потерь отобрать из множества протоколов и соединений нужные для анализа пакеты в режиме реального времени.

Когда простое зеркалирование (mirroring) в сочетании с инструментами декодирования не позволяет надёжно извлечь информацию, на помощь приходит Беркут-МХ.


В режиме оперативного сбора приходящие на 10G интерфейс данные фильтруются в соответствии с настройками, а затем передаются на обычный компьютер со скоростью до 1 Гбит/с для расшифровки и анализа.


Критерии фильтрации задаются пользователем и могут определяться как набор IP-адресов, протоколов, VLAN и MPLS меток, диапазонов длин, а также строк символов в пакетах.

Оценка качества RTP-потоков (VoIP и IPTV)

Изменение характера услуг, оказываемых по сети Ethernet, привело к активному использованию полосы для передачи как телефонного, так и видеотрафика. С каждым днём нагрузка, создаваемая пользователями IP-телефонии и IPTV, увеличивается. Вместе с тем, качество обслуживания часто остаётся без внимания. Эффективные средства оперативного мониторинга, позволяющие оценить характер проблем в каналах передачи трафика реального времени на скорости 10 Гбит/с, представляют собой громоздкие и дорогостоящие системы.

Механизм контроля качества RTP (Real-time protocol), предполагающий использование Беркут-МХ и серверов обработки данных, обеспечивает анализ до 25 000 видеопотоков при 100% нагрузке на 10-гигабитный канал передачи данных¹.

Зависимость уровня потерь пакетов от времени

Зависимость количества камер, имеющих потери, от времени

Statistics. †Loss rate >= 0.1% (CSV)

Configured IP	1221
Lost IP	1
Active IP	1231
IP with loss rate >= 0.1%	2
IP with unavailability >= 0.1%	49
Available time	29279:07:00
Unavailable time	288:53:00
Average unavailability, %	0.977013
Received packets	18898245733
Lost packets	116912
Average loss rate, %	0.00114443
Maximum number of cameras	3146
Average number of cameras	3127.96
Minimum number of cameras	3108
Maximum lossy RTP sources number	47
Average lossy RTP sources number	6.90347
Minimum lossy RTP sources number	1

	IP	Received	Lost	↑Loss rate, %	Avail. time	Unavail. time	Unavail., %
1	10.193.46.151	5144893	59016	1.134071	24:00:00	0:00:00	0.000000
2	10.193.56.61	25875640	28640	0.110561	24:00:00	0:00:00	0.000000
Statistics. Unavailability >= 0.1% (<u>CSV</u>)							
	IP	Received	Lost	Loss rate, %	Avail. time	Unavail. time	↑ Unavail., %
1	10.193.49.86	0	0	0	0:00:00	24:00:00	100.0
2	10.193.49.84	623630	0	0.000000	1:44:00	22:16:00	92.777778
3	10.193.48.70	1569358	0	0.000000	3:06:00	20:54:00	87.083333
4	10.192.46.149	2195513	0	0.000000	3:07:00	20:53:00	87.013889
5	10.192.46.148	2255799	0	0.000000	3:12:00	20:48:00	86.666667
6	10.192.46.150	2274334	0	0.000000	3:14:00	20:46:00	86.527778
7	10.193.47.41	7798010	0	0.000000	8:01:00	15:59:00	66.597222
8	10.193.46.84	9959484	0	0.000000	10:50:00	13:10:00	54.861111
9	10.193.46.210	3728105	0	0.000000	12:52:00	11:08:00	46.388889
1	10.193.46.19	9383485	0	0.000000	12:56:00	11:04:00	46.111111
1	10.193.47.47	1311308	0	0.000000	13:04:00	10:56:00	45.555556
1	2 10.193.46.209	4644445	0	0.000000	13:04:00	10:56:00	45.555556
1	10.193.56.36	2765365	0	0.000000	13:05:00	10:55:00	45.486111
1	4 10.193.49.109	3811871	0	0.000000	13:06:00	10:54:00	45.416667
1	10.193.46.181	10427854	0	0.000000	13:06:00	10:54:00	45.416667
1	10.193.46.242	2982397	0	0.000000	13:07:00	10:53:00	45.347222
1	7 10.192.48.71	9294434	0	0.000000	13:07:00	10:53:00	45.347222
1	10.193.46.170	2937656	0	0.000000	13:12:00	10:48:00	45.000000
1	10.193.46.224	3472659	0	0.000000	13:14:00	10:46:00	44.861111
2	10.193.46.201	4796466	0	0.000000	19:45:00	4:15:00	17.708333
2	10.192.56.24	16437104	1004	0.006108	22:51:00	1:09:00	4.791667

Сводная статистика

Статистика по потерям пакетов и временной недоступности

 $^{^{1}}$ Детальная конфигурация системы зависит от условий подключения и количества точек подключения

Спецификации

Интерфейсы

до 8×SFP+ ²	Интерфейсы 10G Ethernet
до 8×10/100/1000BASE-T ²	Интерфейсы 10/100/1000 Ethernet RJ-45 для подключения к оборудованию анализа трафика
1×10/100BASE-T	Порт удалённого управления
1×USB	Консоль управления

Общие характеристики

Физические параметры				
Габаритные размеры (В $ imes$ Ш $ imes$ Г)	106×33,6×169 мм	19"×1U×348 мм		
Условия эксп	луатации			
Диапазон рабочих температур 0–35 °C		0-35 °C		
циапазон температур транспортировки и хранения -10+45 °C		.0+45 °C		
Относительная влажность воздуха	я влажность воздуха 80% при температуре 25 °C			
Электропи	тание			
Внешний блок питания	90-264 В, 50 Гц	19 В, 2.1 А или 15 В, 2.67 А		
Внутренний блок питания	_	85-264 В, 50 Гц		
Потребляемая мощность ³	15-30 Вт	до 120 Вт		

Фильтрация и анализ трафика

Настраиваемые фильтры L2 – L4	10 фильтров на один 10G порт: MPLS (до 3-х меток), VLAN (до 3-х меток), MAC-адрес источника/получателя, IP-адрес источника/маска, IP-адрес получателя/маска, DSCP биты IP-заголовка, номер TCP/UDP-порта источника/получателя, тип протокола транспортного уровня, группировка по диапазонам и дополнительным параметрам (например, чётный/нечётный номер порта или произвольная строка в пакете)
Фильтры L3, L4	2000 фильтров на один 10G порт: IP-адрес источника/маска, IP-адрес получателя/маска, номер TCP/UDP-порта источника/получателя. Проверка частичного совпадения любого из перечисленных параметров по маске (например, чётный/нечётный номер порта)
Анализ качества RTP-потоков	до 25 000 сессий

Статистика и удалённое управление

Статистика	Подсчёт количества пакетов и байт данных, поступивших на интерфейсы 1G и 10G; совпавших по правилам фильтрации; не поместившихся в 1G полосу; определение максимальной и мгновенной скорости передачи
Удалённое управление	Доступ к настройке параметров фильтрации для всех портов, а также получение статусной информации и статистики посредством интерфейса командной строки

© Метротек, 2014

 $^{^{2}}$ Количество портов зависит от аппаратной модификации устройства.

³Потребляемая мощность зависит от типа используемых оптических модулей и режима работы.