

Оглавление

1.	Введение	5
	1.1. Общие сведения	5
	1.2. Основные возможности	5
	1.3. Комплект документации	6
	1.4. Комплект поставки	6
2.	Меры безопасности	7
3 .	Подготовка к работе	8
4.	Внешний вид	9
	4.1. Включение и выключение прибора	10
	4.2. Тестовые порты	11
	4.3. Индикаторы состояния портов	11
	4.4. Разъёмы боковой панели	12
	4.5. Светодиодные индикаторы	13
	4.6. Индикатор Power	13
	4.7. Клавиатура	14
5.	Подключение к прибору	15
	5.1. Параметры подключения	15
	5.2. Подключение по интерфейсу Ethernet	16
	5.2.1. OC Linux	16
	5.2.2. OC Windows	16
	5.3. Подключение по интерфейсу USB	17
	5.3.1. OC Linux	17
	5.3.2. OC Windows	17
6.	Конфигурация прибора	19
	6.1. Изменение пароля	19
	6.2. Добавление пользователей	19
7.	Обновление программного обеспечения прибора	20
	7.1. Подготовка к обновлению	20
	7.2. Алгоритм обновления	20
Q	Техническое обстуживание тестера	21

Беркут-ЕТ. Руководство по эксплуатации

9.	Техническая поддержка	22	
Α.	Спецификации	23	
	А.1. Общие характеристики	23	
	А.2. Тестирование	23	
	А.3. Опции поставки	25	

1. Введение

В настоящем руководстве представлены сведения об основных функциях, способах подключения и настройке тестера-анализатора сетей Ethernet Беркут-ЕТ.

1.1. Общие сведения

Тестер-анализатор сетей Ethernet Беркут-ET (далее по тексту также «прибор», «устройство») предназначен для проведения анализа и диагностического тестирования трактов на скоростях от 10 Мбит/с до 1 Гбит/с, оценки качества услуг, создания 100% нагрузки на оборудование и сеть, измерения полосы пропускания, задержки передачи и джиттера. Прибор выполняет тестирование по методике RFC 2544, рекомендации Y.1564, создаёт Ethernet-шлейф и получает статистику по принимаемому и передаваемому трафику.

1.2. Основные возможности

- Генерация и регистрация трафика с нагрузкой до 100% на любом уровне стека TCP/IP.
- Диапазон скоростей передачи данных в сетях: от 10 Мбит/с до 1 Гбит/с.
- Измерение характеристик сетевых устройств по методике RFC 2544.
- BER тестирование.
- Измерения по рекомендации Y.1564: проверка на соответствие SLA.
- Поддержка VLAN Q-in-Q и MPLS.
- Измерение пакетного джиттера.
- Режим интеллектуального шлейфа (Smart Loopback) с одновременным сбором статистики.
- Поддержка односторонних (One-Way) измерений.
- Поддержка РТР/ІЕЕЕ 1588 .

1.3. Комплект документации

Вместе с прибором поставляются следующие руководства по эксплуатации:

- «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по структуре меню».
- «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по тестированию»
- «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по командам удалённого управления»

1.4. Комплект поставки

Комплект поставки тестера-анализатора Беркут-ЕТ зависит от заказа и приведён в паспорте.

2. Меры безопасности

- До начала работы с прибором Беркут-ЕТ внимательно изучите настоящее руководство по эксплуатации.
- Если прибор транспортировался или хранился при отрицательных температурах, то перед включением следует выдержать его в нормальных климатических условиях не менее 2 часов.
- Условия эксплуатации должны соответствовать условиям, приведённым в разделе A.1.
- При эксплуатации прибора должны выполняться общие требования правил пожарной безопасности.
- Питающая сеть не должна иметь резких скачков напряжения. Рядом с рабочим местом не должно быть источников сильных магнитных и электрических полей.
- Необходимо оберегать прибор от ударов, попадания влаги и пыли, продолжительного воздействия прямых солнечных лучей.
- При длительных перерывах в работе рекомендуется отключать блок питания прибора от сети.

3. Подготовка к работе

До начала работы с прибором Беркут-ЕТ необходимо выполнить следующие действия:

- 1. После извлечения устройства из упаковки произвести внешний осмотр и проверить комплектность в соответствии с паспортом.
- 2. Если прибор транспортировался или хранился при отрицательных температурах, то перед включением следует выдержать его в нормальных климатических условиях не менее 2 часов.
- 3. Подключить блок питания к разъёму питания прибора (см. рис. 4.6), а затем к электрической розетке. После подключения загорается индикатор «Power» (см. раздел 4.6).
- 4. Включить прибор, нажав на клавишу 🙆 (см. раздел 4.1).

Примечание. Подробная информация о работе с меню представлена в брошюре «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по структуре меню».

4. Внешний вид

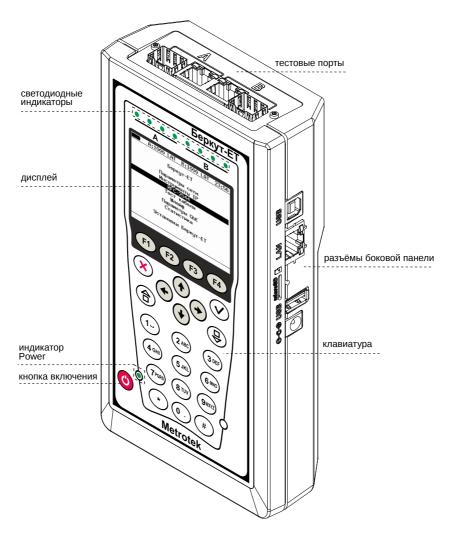


Рис. 4.1. Внешний вид прибора Беркут-ЕТ

4.1. Включение и выключение прибора

Для включения прибора необходимо нажать и удерживать клавишу **6** в течение 2–3 с. После загрузки системы на экране отобразится меню «Настройки»:

Рис. 4.2. Меню «Беркут-ЕТ. Настройки»

Для выключения прибора следует однократно нажать на клавишу (), после чего на экране появится сообщение о выключении прибора:

Рис. 4.3. Сообщение о выключении прибора

Для выключения прибора с сохранением всех настроек необходимо нажать на клавишу ^{F3} или дождаться автоматического выключения по истечении 10 с. При нажатии на клавишу ^{F4} прибор выключен не будет.

Для принудительного выключения следует нажать и удерживать клавишу **о** в течение 4 с

Примечание. Принудительное завершение работы используется в случае, когда прибор перестал отвечать на нажатия клавиш или возникла экстренная необходимость выключения. При этом настройки прибора не сохраняются.

4.2. Тестовые порты

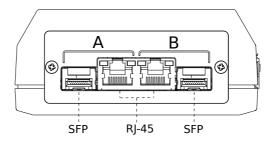


Рис. 4.4. Верхняя панель прибора Беркут-ЕТ

Верхняя панель прибора Беркут-ЕТ имеет два порта (A и B) для подключения к тестируемому устройству или сети Ethernet/Gigabit Ethernet. Каждый порт содержит 2 разъёма — RJ-45 и SFP. Во время тестирования используется только один из разъёмов.

4.3. Индикаторы состояния портов

Порты А и В прибора Беркут-ЕТ имеют два светодиодных индикатора для определения состояния и активности соединения.

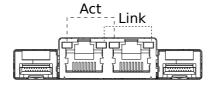


Рис. 4.5. Светодиодные индикаторы тестовых портов

Индикатор	Цвет	Описание
Act	оранжевый (мигает)	идёт приём/передача данных
	_	приём/передача данных не осуществляется
Link	зелёный	соединение установлено
	_	соединения нет

4.4. Разъёмы боковой панели

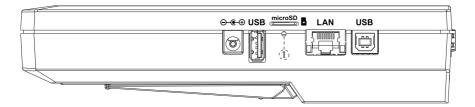


Рис. 4.6. Боковая панель прибора Беркут-ЕТ

Маркировка	Назначение
⊝-€-⊕	Подключение внешнего блока питания.
	Подключение внешних USB-накопителей и Wi-Fi адаптеров.
USB (USB A)	Примечание. Допускается использовать только проверенные и рекомендованные производителем Wi-Fi адаптеры. Для получения актуального списка адаптеров следует обратиться в службу технической поддержки (см. раздел 9).
	Разъём с картой памяти, содержащей программное обеспечение прибора.
micro SD	Примечание. Работа прибора без установленной карты невозможна. Недопустимо извлекать карту памяти из разъёма для использования в других устройствах.
<u>(1)</u>	Кнопка аппаратного сброса.
LAN	Удалённое управление устройством.
USB (USB B)	Подключение к персональному компьютеру.

4.5. Светодиодные индикаторы

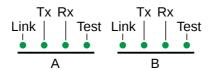


Рис. 4.7. Светодиодные индикаторы лицевой панели

Индикатор	Цвет	Состояние	Описание
Link	зелёный	горит постоянно	соединение с тестируемым оборудованием установлено
	красный	горит постоянно	соединения нет
	_	не горит	интерфейс не активен
Tx	зелёный	мигает или горит постоянно	идёт передача пакетов
	_	не горит	передача пакетов не осуществляется
Rx	зелёный	мигает или горит постоянно	идёт приём пакетов
	_	не горит	приём пакетов не осуществляется
Test	зелёный	горит постоянно	проводится тестирование
		мигает	включен режим «Шлейф»
	_	не горит	режим «Шлейф» выключен, тестирование не проводится

Примечание. Для отображения подписей к светодиодным индикаторам служит клавиша \bigoplus (см. раздел 4.7)

4.6. Индикатор Power

Светодиодный индикатор, расположенный в нижней части передней панели корпуса прибора, загорается при подключении внешнего источника питания:

- зелёный: аккумуляторные элементы заряжены;
- оранжевый: идёт заряд аккумуляторных элементов (после окончания заряда индикатор загорится зелёным).
- зелёный и кратковременно мигает оранжевым: выполняется проверка аккумуляторных элементов на уровень заряда (при уровне более 90 % заряд включён не будет).

4.7. Клавиатура

Клавиша	Описание
0	Включение/выключение прибора (см. раздел 4.1)
a	Главное меню Клавиша возврата в главное меню из любого подменю.
(D)	Информационная панель Клавиша для отображения подписей к светодиодным индикаторам (см. раздел 4.5). Цвет фона подписи совпадает с цветом соответствующего индикатора.
\bigcirc	Ввод Клавиша перехода в меню или подменю. При выборе пункта меню, позволяющего вводить значения параметров, нажатие на клавишу обеспечивает переход в режим задания данных. Повторное нажатие подтверждает введённые значения.
×	Отмена/Выход Клавиша перехода в предыдущее меню. В режиме задания данных служит для отмены ввода данных.
F1 F2 F3 F4	Функциональные клавиши
lacktriangledown	Клавиши управления курсором
1 - 2 ABC 3 DEF 4 GHY 5 JKL 6 MIO 7 PORS 8 TUV 9WX72 0 • #	Клавиши ввода цифр, букв и символов

5. Подключение к прибору

Подключение к прибору Беркут-ЕТ выполняется с помощью персонального компьютера (ПК) по интерфейсу Ethernet (см. раздел 5.2) или USB (см. раздел 5.3).

5.1. Параметры подключения

На приборе Беркут-ЕТ установлена ОС Linux и созданы три учётные записи: root, admin и user.

Имя	Назначение	Интерфейс для подключения к прибору
root	Управление файлами и сетевыми интерфейсами, установка пакетов.	USB (см. раздел 5.3)
	Примечание. Под учётной за-	Примечание. При подключении к прибору по интерфейсу Ethernet для работы под учётной записью гоот необходимо ввести команду su.
admin	Управление функциями прибора.	USB, Ethernet (см. раздел 5.2)
user	Подключение к прибору, доступ к руководствам пользователя.	USB, Ethernet

В таблице ниже приведены параметры для первого подключения к прибору. После соединения с прибором пароли можно изменить, следуя указаниям раздела 6.1. IP-адрес порта LAN задаётся в меню «Измерения»⇒«Параметры интерфейсов».

Параметр	Значение по умолчанию
IP-адрес порта LAN	192.168.0.1
Пароль для учётной записи root	PleaseChangeTheRootPassword
Пароль для учётной записи admin	PleaseChangeTheAdminPassword
Пароль для учётной записи user	PleaseChangeTheUserPassword

Примечание. Настоятельно рекомендуется изменить пароль для учётной записи root при подключении прибора к сети общего пользования (см. раздел 6.1).

5.2. Подключение по интерфейсу Ethernet

5.2.1. OC Linux

Для установки соединения между ПК и прибором Беркут-ЕТ следует:

- 1. Подключить порт LAN прибора к ПК или сети.
- 2. Включить прибор, нажав на кнопку включения/выключения питания.
- 3. На ПК открыть окно терминала и ввести команду: ssh admin@IP-адрес порта LAN (или ssh user@IP-адрес порта LAN)
- 4. Ввести пароль для используемой учётной записи.

После успешного ввода пароля в окно терминала будет выведено приглашение (рис. 5.1). После этого можно управлять прибором с помощью команд, представленных в брошюре «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по командам удалённого управления».

```
File Edit View Terminal Help
es@srv1:-$ ssh admin@192.168.222.166
admin@192.168.222.166 5 password:
Linux etn 3.18.6-mtk-0.8.3 # 5 SMP Tue Aug 11 17:42:50 MSK 2015 armv7l

Welcome to ETN network analyzer!
Last login: Thu Aug 13 09:34:47 2015 from sonic.ddg
Trying 255.255.255.254...
Connected to 255.255.255.254.
Escape character is 'off'.

BERcut-ET Gigabit Ethernet Analyzer. (C) 2008-2015 Metrotek

BERcut-ET#
```

Рис. 5.1. Приглашение командной строки

5.2.2. OC Windows

Для установки соединения между ПК и прибором Беркут-ЕТ следует:

- 1. Подключить порт LAN прибора к ПК или сети.
- 2. Включить прибор, нажав на кнопку включения/выключения питания.
- 3. Открыть терминальный клиент с поддержкой SSH, например PuTTY.
- 4. Задать IP-адрес порта LAN и войти в систему.
- 5. Ввести имя пользователя: admin или user.

6. Ввести пароль для выбранной учётной записи.

После успешного ввода пароля можно управлять прибором с помощью команд, представленных в брошюре «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по командам удалённого управления».

5.3. Подключение по интерфейсу USB

5.3.1. OC Linux

Взаимодействие с прибором в ОС Linux осуществляется посредством стандартного драйвера USB serial и любой доступной терминальной программы (например, minicom).

Для установки соединения между персональным компьютером (ПК) и прибором с использованием программы minicom необходимо выполнить следующие действия:

- 1. Подключить порт USB В прибора к USB-порту ПК.
- 2. Включить прибор, нажав на кнопку включения/выключения питания.
- 3. На ПК запустить программу minicom:

```
minicom -D /dev/ttyUSB0 -b 115200
```

Примечание. В настройках программы minicom необходимо выключить аппаратное и программное управление потоком.

4. В случае успешного соединения в окно терминальной программы будет выведено приглашение для ввода имени пользователя и пароля.

После корректного ввода параметров подключения можно управлять прибором с помощью команд, представленных в брошюре «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по командам удалённого управления».

5.3.2. OC Windows

Взаимодействие с прибором в ОС Windows осуществляется посредством драйвера Virtual COM Port. Данный драйвер следует предварительно установить на ПК для инициализации прибора в системе. Файлы драйверов для различных операционных систем и указания по их установке представлены на сайте компании FTDI Chip: http://www.ftdichip.com/Drivers/VCP.htm.

Примечание. Взаимодействие с прибором может обеспечиваться как стандартными средствами ОС Windows — программой HyperTerminal, так и терминальными программами сторонних производителей.

Для установки соединения между ПК и прибором с использованием программы HyperTerminal необходимо выполнить следующие действия:

- 1. Подключить порт USB В прибора к USB-порту ПК.
- 2. Включить прибор, нажав на кнопку включения/выключения питания.
- 3. На ПК запустить программу HyperTerminal.
- 4. Создать новое подключение: «Файл» ⇒«Новое подключение».
- 5. Задать имя подключения.
- Определить, каким СОМ-портом в системе является подключенный прибор, обратившись к стандартному приложению «Диспетчер устройств»:
 «Мой компьютер»⇒ «Свойства»⇒ «Оборудование»⇒ «Диспетчер устройств».
- 7. Выбрать последовательный порт, к которому подключен прибор.
- 8. Установить параметры последовательного порта:

```
скорость (бит/с): 115200;биты данных: 8;чётность: нет;стоповые биты: 1;управление потоком: нет.
```

9. После нажатия на кнопку Enter HyperTerminal попытается установить соединение с Беркут-ET. В случае успешного соединения в окно терминальной программы будет выведено приглашение для ввода имени пользователя и пароля.

После корректного ввода параметров подключения можно управлять прибором с помощью команд, представленных в брошюре «Тестер-анализатор сетей Ethernet Беркут-ЕТ. Руководство по командам удалённого управления».

6. Конфигурация прибора

6.1. Изменение пароля

Для изменения пароля по умолчанию (см. раздел 5.1) следует:

- 1. Подключиться к прибору Беркут-ЕТ (см. раздел 5), используя учётную запись root.
- 2. Ввести команду passwd и следовать указаниям на экране ПК.

6.2. Добавление пользователей

Для добавления новых пользователей следует:

- 1. Подключиться к прибору Беркут-ЕТ (см. раздел 5), используя учётную запись root.
- 2. Ввести команду adduser и следовать указаниям на экране ПК.

7. Обновление программного обеспечения прибора

Обновление программного обеспечения (ПО) прибора Беркут-ЕТ выполняется через интерфейс USB с использованием внешнего накопителя. Обновлённое ПО может включать как исправление ошибок, так и новые функциональные возможности. Сохранённые на приборе данные и настройки тестов в процессе обновления не затрагиваются.

7.1. Подготовка к обновлению

Файлы с обновлениями ПО доступны на сайте http://metrotek.spb.ru в разделе «Приборы» ⇒ «Обновления». Перед обновлением необходимо загрузить с сайта zip-архив, распаковать его в корневой каталог USB-накопителя и ознакомиться с содержимым файла readme.txt, в котором хранится важная информация о релизе ПО.

Примечание. Поддерживаются USB-носители только с файловой системой FAT и объёмом не менее 256 Мбайт.

7.2. Алгоритм обновления

Примечание. Не следует отключать USB-накопитель от прибора до окончания процесса обновления.

- 1. Подключить к прибору внешний источник питания.
- 2. Подключить к прибору USB-накопитель, содержащий файлы обновлений, и включить прибор.
- 3. В течение первых 35—40 секунд будет выполнено чтение файлов обновлений с USB-накопителя. В это время никакая информация на экран прибора не выводится.
- 4. После считывания необходимых файлов обновление ПО начнётся автоматически. На экран будет выведен индикатор процесса установки программного обеспечения.
- 5. Обновление ПО занимает не более 5 минут. По окончании процедуры обновления на экране отобразится сообщение об успешном завершении.
- 6. Отключить USB-накопитель. Прибор готов к работе.

8. Техническое обслуживание тестера

Техническое обслуживание прибора Беркут-ET состоит из следующих операций:

- периодический внешний осмотр устройства, блока питания и кабелей с целью содержания в исправном и чистом состоянии;
- периодический заряд аккумуляторной батареи для увеличения её срока службы и поддержания номинальной ёмкости.

Примечание. При длительном хранении прибора на складе батарею рекомендуется заряжать 1 раз в 3 месяца.

9. Техническая поддержка

Заявки по всем техническим вопросам принимаются службой поддержки по рабочим дням с 10:00 до 18:00. Обратиться в службу можно:

- по телефону: +7 (812) 340-0118, +7 (812) 340-0119;
- по e-mail: support@metrotek.spb.ru.

А. Спецификации

А.1. Общие характеристики

Измерительные интерфейсы (A и B)	- 2×RJ-45 (10/100/1000 BASE-T); - 2×1G SFP (1000BASE-SX, 1000BASE-LX, 1000BASE-EX, 1000BASE-T).
	Примечание. Поддерживаются SFP-модули с интерфейсом SGMII.
Интерфейсы управления	- 1×RJ-45 (10/100/1000 BASE-T); - 1×USB B.
Дополнительные интерфейсы	- 1×micro SD; - 1×USB A (host).
Габариты (Д×Ш×В)	200×101×44 мм
Напряжение питания	18В, внешний блок питания
Потребляемая мощность	6–24Вт (зависит от режима работы прибора)
Диапазон рабочих температур	0-35 °C
Диапазон температур транспортировки и хранения	-10+45 °C
Относительная влажность воздуха	80% при температуре 25°C

А.2. Тестирование

Настройка параметров кадров	MAC- и IP-адрес отправителя/получателя, номер порта отправителя/получателя. Поля VLAN, MPLS, EtherType, ToS, Precedence, DSCP. Размеры кадров 64 – 9000 байт.
Генерация тестового потока	Возможность задавать размер кадра, длительность генерации, величину нагрузки, параметры заголовков кадра. Определение количества переданных тестовых кадров.

Анализ тестового потока	Определение количества принятых тестовых пакетов. Результаты анализа: текущая, минимальная, средняя и максимальная задержка.
Шлейф (Loopback)	Интеллектуальный шлейф на физическом, канальном, сетевом и транспортном уровнях. Возможность подмены MAC-адресов, VLAN-меток, IP-адресов, UDP/TCP-портов.
VLAN	Порт A/B — три VLAN-метки, порт LAN — одна VLAN-метка. Конфигурация VLAN Priority и VLAN ID.
Статистика (RFC 2819)	По типам кадров, по размерам кадров, по уровням, по ошибочным кадрам. Количество принятых и переданных пакетов, отображение нагрузки на порту в реальном времени. Типы кадров: broadcast, multicast, unicast. Распределение по размерам. Количество кадров, переданных на канальном и сетевом уровнях. Пакеты сверхмалой (runt), сверхбольшой (jabber) длины и пакеты с ошибочной СКС.
RFC 2544	Throughput (пропускная способность), Frame Loss (уровень потерь кадров), Back-to-Back (предельная нагрузка), Latency (задержка распространения кадров).
BERT	Физический, канальный, сетевой, транспортный уровни тестирования. Результаты анализа: BITs, EBITs, BER, LSS, %LSS, LOS, %LOS. Тестовые последовательности: CRTP, 2e11-1, 2e15-1, 2e20-1, 2e23-1, 2e29-1, 2e31-1, задаваемая пользователем (4 байта). Режим случайного и постоянного размера кадра.
Y.1564	До 10 потоков данных с независимой конфигурацией нагрузки и заголовков кадра. Потери кадров для каждого потока; ширина полосы пропускания, рассчитанная по результатам тестирования. Текущая, минимальная, средняя и максимальная задержка передачи данных. Количество переданных и принятых пакетов для каждого потока.
ЕТ-обнаружение	Конфигурация режима «Шлейф» на удалённом Беркут-ЕТ.
OAM	Включение режима «Шлейф» канального уровня на удалённом устройстве по протоколу ОАМ в соответствии со стандартом IEEE 802.3ah.
Транзит	Включение в разрыв соединения между сетевыми устройствами, сбор статистических данных о проходящем трафике.
Тест кабеля	Тест медного кабеля на обрыв, короткое замыкание, определение расстояния до точки обрыва.

Пользовательские конфигурации	Сохранение и загрузка тестовых конфигураций.
Отчёты	Генерация текстовых и графических отчётов.

А.3. Опции поставки

ETIP (Поддержка сетевых программ и протоколов)	Ping, Traceroute, DNS lookup, DHCP, SSH, Telnet.
ETMM (Y.1564)	Тесты конфигурации и служб: возможность настройки до 10 сервисов с индивидуальными параметрами: MAC/VLAN/MPLS/IP/ToS/нагрузка.
ЕТЈТ (Пакетный джиттер)	Измерения в соответствии с методикой RFC 4689. Результаты анализа: PKTs, OOOPs, INOPs, %OOOPs, %INOPs, paспределение джиттера, количество пакетов, джиттер которых был меньше/больше заданного порога. Режим случайного и постоянного размера кадра.
ETMPLS (Поддержка MPLS)	До 3 MPLS меток. Конфигурация MPLS Label, MPLS CoS и MPLS TTL.
ЕТРТР (РТР-синхронизация)	Синхронизация по протоколу PTPv2 позволяет выполнять измерение задержки по методике RFC 2544, а также анализ по рекомендации Y.1564 при тестировании асимметричных каналов.
ЕТАТ (Односторонние измерения)	Измерение односторонней задержки, пропускной способности канала, потерь пакетов и джиттера. Диагностика каналов, характеристики которых различны для передающего и приемного направлений.
ET2P (Поддержка двух передатчиков)	Проведение измерений на двух интерфейсах.